$K_L - K_S$ mass difference with Lattice QCD at physical masses

Bigeng WangRBC-UKQCD Collaborations

Department of Physics Columbia University in the City of New York

Lattice X Workshop 2019

$K^0 - \overline{K^0}$ Mixing and Δm_K

 $K^0(S=-1)$ and $\overline{K}^0(S=+1)$ mix through second order weak interactions:

$$i\frac{d}{dt}\left(\frac{K^{0}(t)}{\overline{K}^{0}(t)}\right) = \left(M - \frac{i}{2}\Gamma\right)\left(\frac{K^{0}(t)}{\overline{K}^{0}(t)}\right), \quad (1)$$

Long-lived (K_L) and short-lived (K_S) are the two eigenstates:

$$K_S pprox rac{K^0 - \overline{K}^0}{\sqrt{2}}, \quad K_L pprox rac{K^0 + \overline{K}^0}{\sqrt{2}}.$$
 (2)

Figure: figure from wikipedia

$$\Delta m_K \equiv m_{K_L} - m_{K_S} = 2 Re M_{0\overline{0}}$$

Physics Motivation

$$\Delta m_K \equiv m_{K_L} - m_{K_S} = 2 Re M_{0\overline{0}}$$

- This quantity is:
 - Tiny, sensitive to new physics: FCNC via 2nd order weak interaction, precisely measured

$$\Delta m_{K,exp} = 3.483(6) \times 10^{-12} \text{ MeV}$$

- ② Significant contribution from scale of $m_c(GIM mechanism)$
- **Appears difficult to compute from QCD perturbation theory**: strong coupling at m_c scale; significant contributions from NNLO

```
J. Brod and M. Gorbahn, Phys. Rev. Lett. 108, 121801 (2012)
```

- Lattice QCD:
 - from first principles
 - non-perturbative
 - systematic errors(FV, finite a, etc) could be controlled

From Correlators to Δm_{κ}^{lat}

• Δm_K is given by:

$$\Delta m_{K} \equiv m_{K_{L}} - m_{K_{S}}$$

$$= 2\mathcal{P} \sum_{n} \frac{\langle \bar{K}^{0} | H_{W} | n \rangle \langle n | H_{W} | K^{0} \rangle}{m_{K} - E_{n}}$$
(3)

What we measure on lattice are:

$$G(t_1, t_2, t_i, t_f) \equiv \langle 0 | T\{\bar{K}^0(t_f) H_W(t_2) H_W(t_1) K^0(t_i)\} | 0 \rangle$$
 (4)

$$\rightarrow G(\delta) = N_K^2 e^{-m_K(t_f - t_i)} \sum_n \langle \bar{K}^0 | H_W | n \rangle \langle n | H_W | K^0 \rangle e^{(m_K - E_n)\delta}$$

Extract Δm_K from Double-integrated Correlators

The double-integrated correlator is defined as:

$$A = \frac{1}{2!} \sum_{t_2=t_a}^{t_b} \sum_{t_1=t_a}^{t_b} \langle 0 | T\{\bar{K}^0(t_f) H_W(t_2) H_W(t_1) K^0(t_i)\} | 0 \rangle \quad (5)$$

• If we insert a complete set of intermediate states, we find:

$$A = N_K^2 e^{-m_K (t_f - t_i)} \sum_{n} \frac{\langle \bar{K}^0 | H_W | n \rangle \langle n | H_W | K^0 \rangle}{m_K - E_n} \{ -T + \frac{e^{(m_K - E_n)T} - 1}{m_K - E_n} \}$$
(6)

with $T \equiv t_b - t_a + 1$.

Extract Δm_K from Single-integrated Correlators

The single-integrated correlator is defined as:

$$\mathcal{A}^{s}(t,T) \equiv \frac{1}{2!} \sum_{t_{1}=t-T}^{t+T} \langle 0 | T\{\bar{K}^{0}(t_{f})H_{W}(t_{1})H_{W}(t)K^{0}(t_{i})\} | 0 \rangle$$
 (7)

• If we insert a complete set of intermediate states, we find:

$$A^{s} = N_{K}^{2} e^{-m_{K}(t_{f} - t_{i})} \sum_{n} \frac{\langle \bar{K}^{0} | H_{W} | n \rangle \langle n | H_{W} | K^{0} \rangle}{m_{K} - E_{n}} (-1 + e^{(m_{K} - E_{n})(T + 1)})$$
(8)

Subtraction of the light states

 Either Double- or Single-integrated Method requires subtraction of the terms from light states:

$$\mathcal{A} = N_{K}^{2} e^{-m_{K}(t_{f}-t_{i})} \sum_{n} \frac{\langle \bar{K}^{0} | H_{W} | n \rangle \langle n | H_{W} | K^{0} \rangle}{m_{K} - E_{n}} \{ -T + \frac{e^{(m_{K}-E_{n})T} - 1}{m_{K} - E_{n}} \}$$
(9)

$$A^{s} = N_{K}^{2} e^{-m_{K}(t_{f} - t_{i})} \sum_{n} \frac{\langle \bar{K}^{0} | H_{W} | n \rangle \langle n | H_{W} | K^{0} \rangle}{m_{K} - E_{n}} \{-1 + e^{(m_{K} - E_{n})(T + 1)}\}$$
(10)

- For $|n\rangle$ (in our case $|0\rangle$, $|\pi\pi\rangle$, $|\eta\rangle$, $|\pi\rangle$) with $E_n < m_K$ or $E_n \sim m_K$: the exponential terms will be significant. We can:
 - freedom of adding $c_s \bar{s} d$, $c_p \bar{s} \gamma^5 d$ operators to the weak Hamiltonian Here we choose:

$$\langle 0|H_W-c_p\bar{s}\gamma_5d|K^0\rangle=0, \langle \eta|H_W-c_s\bar{s}d|\bar{K}^0\rangle=0$$

• subtract contributions from other states($|\pi\rangle$, $|\pi\pi\rangle$) explicitly

Operators of Δm_K^{lat} calculation

• The $\Delta S = 1$ effective Weak Hamiltonian:

$$H_W = \frac{G_F}{\sqrt{2}} \sum_{q,q'=u,c} V_{qd} V_{q's}^* (C_1 Q_1^{qq'} + C_2 Q_2^{qq'})$$
 (11)

where the $Q_{i}^{qq'}{}_{i=1,2}$ are current-current opeartors, defined as:

$$egin{aligned} Q_1^{qq'} &= (ar{s}_i \gamma^{\mu} (1 - \gamma^5) d_i) (ar{q}_j \gamma^{\mu} (1 - \gamma^5) q_j') \ Q_2^{qq'} &= (ar{s}_i \gamma^{\mu} (1 - \gamma^5) d_j) (ar{q}_j \gamma^{\mu} (1 - \gamma^5) q_i') \end{aligned}$$

• There are four states need to subtracted: $|0\rangle$, $|\pi\pi\rangle$, $|\eta\rangle$, $|\pi\rangle$. We add $c_s\bar{s}d$, $c_p\bar{s}\gamma^5d$ operators to weak operators to make:

$$\langle 0|Q_i - c_{pi}\bar{s}\gamma_5 d|K^0\rangle = 0, \langle \eta|Q_i - c_{si}\bar{s}d|K^0\rangle = 0$$
 (12)

$$Q_i' = Q_i - c_{pi}\bar{s}\gamma_5 d - c_{si}\bar{s}d \tag{13}$$

Diagrams in the Calculation of Δm_K^{lat}

• For contractions among Q_i , there are four types of diagrams to be evaluated.

• In addition, there are "mixed" diagrams from the contractions between the $c_s \bar{s} d c_p \bar{s} \gamma^5 d$ operators and Q_i operators.

Short distance correction?

Figure: Different cases about physics on lattice with respect to energy scales. The shaded area represents where the contributions are important.

Quadratic divergences as the two H_W approach each other: cutoff effect $\propto (1/a)^2$ needs short-distance correction.

GIM mechanism + LL structure removes both quadratic and logarithmic divergences: $\sim (m_c a)^2$

- Ultraviolet divergences as the two H_W approach each other: $\sim (1/a)^2$
- GIM mechanism \rightarrow up minus charm quark propagators(for valence charm we used $am_c \simeq 0.31$) $16^3 \times 32$ lattice: Q_1Q_1 correlator amplitude reduction by a factor of 10 after introducing valence charm with mass 863 MeV (Jianglei Yu's PhD thesis, 2014).

- Ultraviolet divergences as the two H_W approach each other: $\sim (1/a)^2$
- GIM mechanism → up minus charm quark propagators(for valence charm we used $am_c \simeq 0.31$) $16^3 \times 32$ lattice: $Q_1 Q_1$ correlator amplitude reduction by a factor of 10 after introducing valence charm with mass 863 MeV (Jianglei Yu's PhD thesis, 2014).

- ullet Ultraviolet divergences as the two H_W approach each other: $\sim (1/a)^2$
- GIM mechanism \rightarrow charm minus up quark propagators(for valence charm we used $am_c \simeq 0.31$) $16^3 \times 32$ lattice: Q_1Q_1 correlator amplitude reduction by a factor of 10 after introducing valence charm with mass 863 MeV (Jianglei Yu's PhD thesis, 2014).

Thus in our calculation of Δm_K , GIM mechanism + LL structure removes both quadratic and logarithmic divergences:

- short distance contribution greatly suppressed.
- Major contribution to Δm_K from scale $\sim m_c$

Operator Renormalizations

• Renormalization of Lattice operator $Q_{1,2}$ in 3 steps:

$$C_{i}^{lat} = C_{a}^{\overline{MS}} (1 + \Delta r)_{ab}^{RI
ightarrow \overline{MS}} Z_{bi}^{lat
ightarrow RI}$$

Non-perturbative Renormalization: from lattice to RI-SMOM

$$Z^{lat \to RI} = \begin{bmatrix} 0.6266 & -0.0437 \\ -0.0437 & 0.6266 \end{bmatrix}$$
 (14)

Perturbation theory: from RI-SMOM to MS

C. Lehner, C. Sturm, Phys. Rev. D 84(2011), 014001

$$\Delta r^{RI \to \overline{MS}} = 10^{-3} \times \begin{bmatrix} -2.28 & 6.85 \\ 6.85 & -2.28 \end{bmatrix}$$
 (15)

• Use Wilson coefficients in the \overline{MS} scheme

G. Buchalla, A.J. Buras and M.E. Lautenbacher, arXiv:hep-ph/9512380

$$C^{\overline{MS}} = 10^{-3} \times \begin{bmatrix} -0.260 & 1.118 \end{bmatrix}$$
 (16)

• "Long-distance contribution of the $K_L - K_S$ mass difference",

N. H. Christ, T. Izubuchi, C. T. Sachrajda, A. Soni and J. Yu

Phys. Rev. D 88(2013), 014508

Development of techniques and exploratory calculation on a $16^3 \times 32$ lattice with unphysical masses($m_{\pi} = 421 MeV$) including only connected diagrams

• "Long-distance contribution of the $K_L - K_S$ mass difference",

N. H. Christ, T. Izubuchi, C. T. Sachrajda, A. Soni and J. Yu

Phys. Rev. D 88(2013), 014508

Development of techniques and exploratory calculation on a $16^3 \times 32$ lattice with unphysical masses($m_{\pi} = 421 MeV$) including only connected diagrams

• " $K_L - K_S$ mass difference from Lattice QCD"

Z. Bai, N. H. Christ, T. Izubuchi, C. T. Sachrajda, A. Soni and J. Yu

Phys. Rev. Lett. 113(2014), 112003

All diagrams included on a 24³ × 64 lattice with unphysical masses

ullet "Long-distance contribution of the K_L-K_S mass difference",

N. H. Christ, T. Izubuchi, C. T. Sachrajda, A. Soni and J. Yu

Phys. Rev. D 88(2013), 014508

Development of techniques and exploratory calculation on a $16^3 \times 32$ lattice with unphysical masses($m_{\pi} = 421 MeV$) including only connected diagrams

- " $K_L K_S$ mass difference from Lattice QCD"
 - Z. Bai, N. H. Christ, T. Izubuchi, C. T. Sachrajda, A. Soni and J. Yu

Phys. Rev. Lett. 113(2014), 112003

All diagrams included on a $24^3 \times 64$ lattice with unphysical masses

- "The $K_L K_S$ Mass Difference"
 - Z. Bai, N. H. Christ and C. T. Sachrajda, EPJ Web Conf. 175 (2018) 13017 All diagrams included on a $64^3 \times 128$ lattice with **physical mass** on 59 configurations: $\Delta m_k = (5.5 \pm 1.7_{stat}) \times 10^{-12} MeV$

 \bullet "Long-distance contribution of the $\mathcal{K}_L-\mathcal{K}_S$ mass difference",

N. H. Christ, T. Izubuchi, C. T. Sachrajda, A. Soni and J. Yu

Phys. Rev. D 88(2013), 014508

Development of techniques and exploratory calculation on a $16^3 \times 32$ lattice with unphysical masses($m_{\pi} = 421 MeV$) including only connected diagrams

- " $K_L K_S$ mass difference from Lattice QCD"
 - Z. Bai, N. H. Christ, T. Izubuchi, C. T. Sachrajda, A. Soni and J. Yu

Phys. Rev. Lett. 113(2014), 112003

All diagrams included on a $24^3 \times 64$ lattice with unphysical masses

- "The $K_L K_S$ Mass Difference"
 - Z. Bai, N. H. Christ and C. T. Sachrajda, EPJ Web Conf. 175 (2018) 13017 All diagrams included on a $64^3 \times 128$ lattice with **physical mass** on 59 configurations: $\Delta m_k = (5.5 \pm 1.7_{stat}) \times 10^{-12} MeV$
- Here I present an update of the analysis methods used and results having smaller statistical errors with 152 configurations.

Details of the Calculation

• $64^3 \times 128 \times 12$ lattice with Möbius DWF and the Iwasaki gauge action with physical pion mass (136 MeV) and $a^{-1}=2.36 {\rm GeV}$

N_f	β	amı	am _h	$\alpha = b + c$	Ls
2+1	2.25	0.0006203	0.02539	2.0	12

- Data:
 - Sample AMA Correction and Super-jackknife Method

data type	CG stop residual	
sloppy	1e – 4	
exact	1e – 8	

ĺ	Data Set	# of Sloppy	# of Correction	# of Type 1&2
ĺ	Total	116	36	36

 Disconnected Type4 diagrams: save left- and right-pieces separately and use multiple source-sink separation for fitting.

Update of the results

2-point and 3-point results preliminary

Meson masses are consistent with physical values

m_{π}	m_K	m_{η}	$m_{\pi\pi,I=0}$
0.0574(1)	0.2104(1)	0.258(16)	0.1138(5)
135.5(2)	496.5(2)	609.9(37.8)	268.5(1.3)

• $c'_s s$ and $c'_p s$ will be multilpied by the "mixing" diagrams and the errors from $c'_s s$ and $c'_p s$ will be carried all along.

$c_{s1,\eta}$	$c_{s2,\eta}$	$c_{p1,vac}$	C _{p2,vac}
$2.13(33) \times 10^{-4}$	$-3.16(25)\times10^{-4}$	$1.472(2) \times 10^{-4}$	$2.807(2) \times 10^{-4}$
$\langle \pi \pi_{I=0} Q_1' K^0 \rangle$	$\langle \pi \pi_{I=0} Q_2' K^0 \rangle$	$\langle \pi Q_1' K^0 angle$	$\langle \pi Q_2' K^0 \rangle$
$-8.7(1.5)\times10^{-5}$	$9.5(1.5) \times 10^{-5}$	$7.7(2.5)\times10^{-4}$	$-4.1(1.6)\times10^{-4}$

Double-integrated correlators preliminary

- Fitting range: 10:20
- All diagrams, uncorrelated fit
- $m{\Delta}m_{K}=8.1(1.2) imes10^{-12} ext{MeV}$

$$\mathcal{A} = N_{K}^{2} e^{-m_{K}(t_{f} - t_{i})} \sum_{n} \frac{\langle K^{0} | H_{W} | n \rangle \langle n | H_{W} | \bar{K}^{0} \rangle}{m_{K} - E_{n}} \{ -T + \frac{e^{(m_{K} - E_{n})T} - 1}{m_{K} - E_{n}} \}$$

Single-integrated correlators preliminary

$$G(\delta) = N_K^2 e^{-m_K(t_f - t_i)} \sum_n \langle \bar{K}^0 | H_W | n \rangle \langle n | H_W | K^0 \rangle e^{(m_K - E_n)\delta}$$
 (18)

Check: Unintegrated $\to \langle 0|Q_i'|K^0\rangle=0$, $\langle \eta|Q_i'|K^0\rangle=0$ \to Subtract $\langle \pi|Q_i'|K^0\rangle$

$$Q_i' = Q_i - c_{pi}\bar{s}\gamma_5 d - c_{si}\bar{s}d$$

Next step: integrate and obtain Δm_K

Note: Need to add back contributions to Δm_K from subtracted states.

Single-integrated correlators: All diagrams, uncorrelated, **preliminary**

(a) unintegrated results with π subtraction

(b) After integrating to large *T*, converged

Choosing T=10, as the integration upper limit:

$$\Delta m_{K} = 6.9(0.6) \times 10^{-12} \text{MeV}$$

Sources of Error

- Statistical Error
 - Less statistics for large operator separation
- Systematic errors:
 - Finite-volume corrections: small compared to statistical errors
 "Effects of finite volume on the K_L K_S mass difference"
 N.H. Christ, X. Feng, G. Martinelli and C.T. Sachrajda, arXiv:1504.01170

$$\Delta m_K(FV) = -0.22(7) \times 10^{-12} MeV$$
 (19)

- Discretization effects are the largest sources of systematic error
 - O(a): No contributions from DWF;
 Insure that no O(a) error is introduced by lattice summation.(please see next slide)
 - $\mathcal{O}(a^2)$: No short distance correction needed due to GIM cancellation Instead, $\sim (m_c a)^2$

Systematic errors

- Discretization effects are the largest source of systematic error:
 - \circ $\mathcal{O}(a)$: No corrections needed: integrand's boundary values goes to zero

- $\mathcal{O}(a^2)$:
 - Heavy charm quark, $\sim (m_c a)^2$ gives 25% Extrapolation needed.
 - Another estimate based on HVP calculation is $\sim 15\%$

Results preliminary

- Using single-integration method, we could:
 - Manually avoid including noise around zero for large enough operator separations
 - ② Smaller error in subtraction: $e^{-(E_n m_K)t}$ rather than $\frac{1}{E_n m_K}e^{-(E_n m_K)t}$
- Δm_K values obtained from 2 analysis methods

Method	Double-int	
$\Delta m_K/10^{-12}~{ m MeV}$	$8.1(1.2)_{stat}$	$6.9(0.6)_{stat}$

consistent within uncertainties

Conclusion and Outlook

Our preliminary result based on 152 configurations is

$$\Delta m_{K} = 6.7(0.6)_{stat}(1.7)_{sys} \times 10^{-12} MeV$$

to be compared to the experimental value

$$(\Delta m_K)^{exp} = 3.483(6) \times 10^{-12} MeV$$

- Outlook
 - Better estimate of the discretization error: Continue the calculation of Δm_K on Summit:
 - On finer lattice(96 $^3 imes 192$, $a^{-1} = 2.8$ GeV) o smaller $m_c a$.
 - Continue the check of the measurement on lattice and data analysis(coefficients and renormalization factors), though the code was checked by Jianglei, Ziyuan and myself before.

Thanks for your attention!

• Ultraviolet divergences as the two H_W approach each other:

$$\int_{m_u}^{a^{-1}} d^4p \gamma^{\mu} (1 - \gamma_5) \frac{p - m_u}{p^2 + m_u^2} \gamma^{\nu} (1 - \gamma_5) \frac{p - m_u}{p^2 + m_u^2} \propto (1/a)^2$$
 (20)

• GIM mechanism removes both quadratic and logarithmic divergences \rightarrow charm quark propagators(for valence charm we used $am_c \simeq 0.31$)

$$\int d^4p \gamma^{\mu} (1 - \gamma_5) \left(\frac{p - m_u}{p^2 + m_u^2} - \frac{p - m_c}{p^2 + m_c^2} \right) \gamma^{\nu} (1 - \gamma_5) (\dots - \dots)$$
 (21)

$$\int d^4p \gamma^{\mu} (1 - \gamma_5) \left(\frac{p(m_c^2 - m_u^2)}{(p^2 + m_u^2)(p^2 + m_c^2)} \right) \gamma^{\nu} (1 - \gamma_5) (\dots - \dots)$$
 (22)

And "short distance" now comming from $\sim 1/m_c$, with $\sim (m_c a)^2$ finite lattice spacing error relevant, rather than $\sim (a^{-1})^2$ divergence.

- Ultraviolet divergences as the two H_W approach each other: $\sim (1/a)^2$
- GIM mechanism \rightarrow charm minus up quark propagators(for valence charm we used $am_c \simeq 0.31$) removes both quadratic and logarithmic divergences: $\sim m_c^2$

Figure: GIM effect in the QCD-free case on lattice quadratic m_c dependence.

• GIM mechanism \rightarrow 64l lattice charm quark propagators(for valence charm we used $am_c \simeq 0.31$)
Similar behavior

Figure: GIM effect on $64^3 \times 128$ lattice.